
p-ISSN : 2443-2210 Jurnal Teknik Informatika dan Sistem Informasi

e-ISSN : 2443-2229 Volume 7 Nomor 1 April 2021

59

Continuous Integration and Continuous Delivery

Platform Development of Software Engineering and

Software Project Management in Higher Education

http://dx.doi.org/10.28932/jutisi.v7i1.3254

Riwayat Artikel

Received: 5 Januari 2021 | Final Revision: 15 Maret 2021 | Accepted: 24 Maret 2021

Sendy Ferdian#1, Tjatur Kandaga#2, Andreas Widjaja#3, Hapnes Toba#4,

Ronaldo Joshua#5, Julio Narabel#6

Faculty of Information Technology, Universitas Kristen Maranatha,

Bandung, Indonesia
1sendy.fs@it.maranatha.edu

2tjatur.kandaga@it.maranatha.edu

3andreas.widjaja@it.maranatha.edu

4hapnestoba@it.maranatha.edu

5ronaldojoshua97@gmail.com

6juliolee90@gmail.com

Abstract — We present a report of the development phase of a

platform that aims to enhance the efficiency of software

project management in higher education. The platform

accommodates a strategy known as Continuous Integration

and Continuous Delivery (CI/CD). The phase consists of

several stages, followed by testing of the system and its

deployment. For starters, the CI/CD platform will be deployed

for software projects of students in the Faculty of Information

Technology, Universitas Kristen Maranatha. The goal of this

paper is to show a design of an effective platform for

continuous integration and continuous delivery pipeline to

accommodate source code compilation, code analysis, code

execution, until its deployment, all in a fully automated

fashion.

Keywords— continuous integration; continuous delivery;

software project; project management

I. INTRODUCTION

There is a main trend in software engineering [1] and

project management where the development of application

consists of phases from writing codes, building and

integrating the application, alpha and beta testing,

debugging, troubleshooting, managing configuration, setting

up runtime environment, and finally deploying the

applications [2]. Those phases are repetitive tasks, time-

consuming and complex processes. The applications are

likely to be very diverse and composed of various tools,

commercially or open-source technologies, therefore

managing application delivery lifecycle is difficult because

of those complexities. Dealing with those daunting and

complex tasks, one solution is using the DevOps [3] [4]

approach.

The relatively new emerging DevOps is a culture where

development, testing, and operations teams join together

collaborating to deliver outcome results in a continuous and

effective way [2] [5]. This way DevOps is a better approach

for organizations to enter the marketplace in the middle of

fierce competition and enabling them to build a better

quality of applications; hence allowing to increase benefits

and bringing customer expectation and satisfaction. It makes

the organizations see opportunities and reducing the time

necessary for customer feedback of a significant fix or new

features in development. The DevOps ultimate goal is to

reduce the development time from the initial concept until

the end result. DevOps culture can significantly result in

faster time to deployment and a much efficient outcome,

and developers can perform continuous integration of their

code and maintain the integrity of the code at all stages of

development.

Here we are interested in the Continuous Integration [6]

and Continuous Delivery [7] [8] combined practice

approach, abbreviated as CI/CD, which is one of the

Jurnal Teknik Informatika dan Sistem Informasi p-ISSN : 2443-2210

Volume 7 Nomor 1 April 2021 e-ISSN : 2443-2229

60

DevOps approaches, which we will apply to higher

education software engineering and student software project

management system. In higher education, particularly in

information technology, information systems, and computer

science education programs, where every student works on a

software development project, management of those student

projects is necessary to ensure their efficiency and

effectiveness. For this reason, it is better to apply CI/CD

approach to achieve a better software project management

system.

II. METHODOLOGY OF CI/CD RESEARCH

In this section and the following subsection, we describe

CI/CD methodology using strategy approach in brief as

shown in Figure 1.

Figure 1. Methodology of CI/CD (strategy)

Here our methodology in Figure 1 works as the strategy

described of the following: Firstly, CI/CD is explored by

doing a survey of tools available, where among those tools

there are readily available to be used and matching their

requirements. Secondly, in the development stage,

experimentations using selected tools are performed based

on tools exploration and utilization. Lastly, testing of the

system is performed leading to the deployment phase.

A. Basics Concept

According to Fowler [9] Continuous Integration is

defined as a practice of a software development with

frequent, at least daily, integration of works done by

members of a team, which leads to daily multiple

integrations. Every team is possible to perform testing of

customer requirements with development. Continuous

Delivery is defined as a discipline of a software

development where a deployment pipeline is built in a way

that at any time it can release the resulting software [10]. It

assures end users whatever is being produced will meet their

needs, hence it shows the customer, whenever they want,

what developers are delivering. CI/CD strategy is also

known as Continuous Deployment, see Zubin [11], Heller

[12], Atlassian [13] and Manturewicz [14].

Related works and analyses of Continuous Integration

and Continuous Delivery practices have been done

extensively by some studies, for example, Lehtonen et al.

[15], Humble et al. [7], Ståhl et al. [6] and Chen [8]. Those

studies conclude that such practices lead faster, effective,

and more efficient in the software development chain, and

yet maintaining software engineering basic principles, as in

[1]. An automation practice of CI/CD has been performed

by Arachchi and Perera [16] which includes automation for

agile software project management, while Krusche and

Alperowitz [17] implement the continuous delivery practice

in multi-customer project courses.

B. CI/CD Tools

Continuous Integration (CI) system [6] [9] is a regulator

that involves many tools and combine them to achieve the

goal of automating the software development process. There

are some tools, for example:

1) Source code control / version control [18]: is a tool

to centrally control source code integration from all

programmers involved. It also functions as a backup

of the source code, regulators when mismatches

occur between codes sent by different programmers,

and setting the source code version automatically.

Examples of version control tools: CVS,

SubVersion, Git, Mercurial, etc.

2) Server or cloud version control service provider

[19]: is a service on the internet that provides a

server or cloud environment for source code

management. Examples are: Github, Gitlab,

Bitbucket etc.

3) Source code builder [20]: produces the destination

code associated with the program language and

framework used. For example: Java compiler, C

compiler, C++ compiler, C# compiler, Python

interpreter, PHP interpreter, Make, Ant, Gradle,

Maven, etc.

4) Software testing tools [21]: which can be further

divided into testing an atomic function (unit testing),

testing the incorporation of various software

components (integration test), and testing the

software interface (user interface / user acceptance

test). Examples are: Junit, NUnit, TestNG, Selenium,

Mockito, etc.

5) Software deployment / installation tools: are used to

build final installation packages to be delivered to

end users.

C. Readily Available Tools

In order to choose the most suitable tools for our projects,

we analyse and evaluate some of CI/CD tools readily

available on the market, as follows:

1) TeamCity [22]: is a Java-based CI/CD Server and

managed by JetBrains. It was released on October 2,

2006. TeamCity can be accessed as a commercial

server and licensed under an exclusive license. Free

license gets access up to 100 build configurations

and 3 Build Agents. It is used by developers and

professionals in the field for DevOps [23] [24]. The

advantage of TeamCity is that the server has a stable

version because it is managed by JetBrains, which is

• Tools

• Readily
Available

• Requirements

Explore
CI/CD

• Experiment
ation

• Tools
Exploration
&
Utilizations

Develop
ment

• Testing

• Deployment
Deploy

p-ISSN : 2443-2210 Jurnal Teknik Informatika dan Sistem Informasi

e-ISSN : 2443-2229 Volume 7 Nomor 1 April 2021

61

not Open Source. The number of TeamCity plugins

is less than those of the open-source CI/CD server.

2) Jenkins [25]: is a leading open-source CI/CD server

which provides hundreds of plugins to support

development, deploying, and automating any IT

projects. It supports versioning tools that are widely

used by developers, professionals [26] [27] [28] and

scientists [29]. Because Jenkins is open source,

anyone can patch the main code from the server so

that it is more powerful, giving it an advantage point.

On the other hand, since it is an open source, it is

accessible to many people, therefore the structure of

Jenkins grows more complex and not so easy to

configure.

3) CircleCI [30]: is a cloud-based CI/CD tool. CircleCI

is also possible to be installed on a private server. It

supports programming languages: Ruby, Python,

Node, Java, PHP, RoR, DJ and JavaScript. Since it is

cloud based, its user does not require physical

hardware. However, it may cause problems when its

cloud has problems.

4) Gitlab CI [31]: is a service part of GitLab that builds

and tests software every time a developer pushes

code into an application. GitLab CD: is a software

service that places changes to every code in

production that results in a daily production

deployment. The advantages of Gitlab CI-CD are

collaboration techniques that allow project team

members to integrate their work every day. However,

Gitlab CI-CD disadvantage is that it can cause

problems if there are problems with the Gitlab cloud

or changes to the Gitlab Server.

5) Azure DevOps Server (formerly Team Foundation

Server) [32]: is a Microsoft product that provides

source code management, reporting, requirements

management, project management (Agile and

WaterFall models), automated builds, lab

management, testing and release management

capabilities. Azure DevOps Server covers the entire

application life cycle and DevOps capabilities. Azure

DevOps Server can be used as a back-end to various

integrated development environments (IDEs) but is

designed for Microsoft Visual Studio and Eclipse on

all platforms. The advantage of Azure DevOps

Server is that it is very suitable for the project team

that uses Microsoft technology. The disadvantage of

Azure DevOps Server is that it requires a minimum

license to purchase in Visual Studio to get a server

license and is needed to purchase Azure DevOps so

that the DevOps feature can run.

6) Travis CI [33]: is a CI/CD service that is equally

managed by JetBrains, just like TeamCity. Travis CI

itself utilizes the full potential of all TeamCity

features. Strengths and Weaknesses of Travis CI are

the same as TeamCity, it's just more widely used for

open-source projects.

7) GoCD [34]: is an open-source tool used in software

development to help teams and organizations

automate the delivery of source code. GoCD

supports automation throughout the build-test-release

process from check-in code to deployment which

helps to continue to produce stable software in

relatively short cycles and ensure that the software

will be released reliably at any time. GoCD is

released under Apache License 2. The advantage of

GoCD is that it supports several version controls

tools, namely: Git, Mercurial, Subversion, Perforce

and Team Foundation Server. The disadvantage of

GoCD is that it requires a fairly complex

configuration to be able to support other plugins.

8) Bamboo [35]: is a CI/CD tool developed by

Atlassian. Although initially available as a cloud-

based service, the cloud version was discontinued at

the end of January 2017. Bamboo's strength is that it

has a Git branching workflow and integrated

placement projects and has built-in integration with

other Atlassian software such as Jira, Confluence,

Bitbucket, and HipChat. The weakness of Bamboo is

that not all services are free and not open-source

software, so the time needed to fix the problem can

considerably be longer.

9) Codeship [36]: is a Continuous Delivery platform to

hosts which help releasing software quickly,

automatically and in frequency of several times a day.

Codeship can shorten the development cycle so as to

reduce the risk of bugs and increase innovation so as

to help software companies to develop better and

faster products by maintaining the testing and release

process. Codeship automates the spread of the

software and all necessary tasks involved with it. The

advantage of Codeship is that it is managed by a

company so the version can be stable. The weakness

of Codeship is that every service provided has

provisions that can always change according to what

is offered.

10) BuddyBuild [37]: is a web-based and self-hosted

CI/CD tool for Git developers that can be used to

build, test and use websites and applications with

code from GitHub, Bitbucket, and GitLab.

BuddyBuild employs a Docker container with

language and frameworks already installed to build,

monitor actions and notices with DevOps. The

advantage of BuddyBuild is that it has been

integrated with GitHub, Bitbucket, and GitLab but

has weakness: it is not easy to integrate with other

plugins.

11) AWS CodePipeline [38]: a service from Amazon, is a

Continuous Delivery service that helps developers

automate the release flow for fast and reliable

application and infrastructure updates. CodePipeline

automates the creation, testing, and implementation

phases of the release process every time there is a

Jurnal Teknik Informatika dan Sistem Informasi p-ISSN : 2443-2210

Volume 7 Nomor 1 April 2021 e-ISSN : 2443-2229

62

code change, based on the release model that

developers specify so that it allows the developers to

send features and updates quickly and reliably.

Developers can easily integrate AWS CodePipeline

with third party services such as GitHub or with their

own custom plugin. With AWS CodePipeline,

developers only pay for what they use. There are no

upfront fees or long-term agreements. So, the

advantage of AWS CodePipeline is the ease of

CI/CD services because it is managed by Amazon

but has a disadvantage: the CI/CD services is not free.

D. CI/CD requirements

The requirement of CI/CD pipeline are described as

follows:

a. Long term maintainability must be ensured;

b. Idempotence principles must be held, that is, should

produce the same result if ran once or multiple times;

c. Builds, tests and deployment should be done in

automated fashion; and

d. The pipeline must be orchestrated.

III. DEVELOPMENT

The development of the platform consists of

experimentation, exploration and utilization phases is

described in the following:

A. Experimentation Stage

After analysing and comparing the features of the various

tools available, we decided to choose Jenkins [39] and

TeamCity [40].

We choose Jenkins because the license is free, the source

code is available freely on the internet (open source), and

can be integrated with many other devices. At present

Jenkins is also de facto the most widely used CI/CD tool in

the world. The reason we choose TeamCity because the

installation process and settings are easier than other CI/CD

tools, making it suitable for use as a first step in learning the

CI/CD strategy. TeamCity licenses are available in both

paid service and free models. The free model licenses are

suitable for small teams that don't need too many build

agents. A build agent is an environment where builds or jobs

from a CI pipeline are executed.

B. Tools Exploration and Utilization

We explore CI/CD tools, Jenkins and TeamCity to

experiments their performances and ease of usability. In the

exploration, it is found that both tools are the most suitable

for higher education student projects in informatics

engineering study program.

We explore Jenkins and the results of our exploration:

Jenkins is easy to install on various operating systems,

Linux with various distributions and Windows 10; Jenkins

is also available for Docker; Jenkins has weekly releases

and provides long-term support; Jenkins is simple and has

easy user interface; Jenkins has many third-party plugins

and it suggests plugins necessary at the time of installation;

Jenkins has a good job configuration page and easy to

navigate; Jenkins is easy to configure and it has

customizable user interface; and it has notification support

of its build status. Those results of the exploration lead to

our decision to select Jenkins among other tools.

Exploration of TeamCity has results: TeamCity has many

features; It has great support for Java, .NET, Android, and

iOS; It has many very useful plugins [41] written by

JetBrains and its community; TeamCity supports almost

every major version control system (VCS) such as Git and

Azure DevOps Server; TeamCity has a good dashboard; It

provides historical data to track builds; TeamCity provides

integration with IntelliJ IDEA and Visual Studio; and it has

an easy to navigate user interface. Those results are our

main reason to select TeamCity among other tools.

C. System Architecture

The architecture of the platform Jenkins and TeamCity

are shown in Figure 2 and Figure 3, respectively.

Figure 2. Jenkins architecture [39]

The architecture of Jenkins applies master-slave scheme

where the server processes codes from the repository, which

can be locally or remotely placed. The Jenkins slaves

connected to the master and may have different operating

systems.

source code
repository

p-ISSN : 2443-2210 Jurnal Teknik Informatika dan Sistem Informasi

e-ISSN : 2443-2229 Volume 7 Nomor 1 April 2021

63

Figure 3. TeanCity architecture [40]

For TeamCity, the architecture [40] allows centralised

scheme, therefore the users may use IDEs of their choices,

in which the source code will be built by build agents,

together with version control system, hence gives the user

convenience thus accelerating the development.

IV. TESTING AND DEPLOYMENT

The testing and deployment of the platform is including

setup and testing phases will be described as follows:

A. System Setup

We install the system in a quite powerful hardware,

utilizing a relatively fast and state-of-the-art processor,

namely AMD Ryzen 9 3900X running at 3.8 GHz (4.6 GHz

Max Boost), which is built using 7-nm lithography

technology with 12 computing cores and capable to run 24

simultaneous threads, running in a fully 64-bit instructions

set. Large amount of 64 GB high-clocked rate random

access memory (RAM) is installed to empower the system

to be able to handle multiple requests simultaneously. A

very fast M.2 PCIe NVMe, 1 TB large capacity, solid state

drive (SSD) is installed to eliminate I/O bottleneck caused

by very high data streams. With this high specification

hardware, we hope that the system will perform smoothly,

even under high load pressure.

B. Deployment

Deployment of projects using Jenkins can be described as

in pipeline process shown in Figure 4. The process includes

CI/CD stages: committing code submitted, build, test, stage

and deploy. With Jenkins there is also source code control

system and including results reporting for later references if

needed.

Figure 4. Deployment pipeline using Jenkins [39] [42].

Pipeline of deployment using TeamCity is described as in

Figure 5. The process includes delivery, version control,

built, testing of unit, automated acceptance test, user

acceptance tests and release. At every stage there is a

feedback. The testing stages assure the quality of the

resulting product.

Figure 5. Deployment pipeline using TeamCity [23] [40]

C. Testing with Various Cases Experimentation

We utilize Jenkins and TeamCity to experiments their

performances and ease of usability for various cases:

including many source codes in various programming

languages, with repository stored locally or remotely.

Here we present an example of CI/CD experimentation

using Jenkins: After installed on the system, Jenkins can be

started by invoking it on the command line terminal, as

shown in Figure 6, and when successful, Jenkins is fully up

and running (see Figure 7). Initial screen when Jenkins is

running is a dashboard view (see Figure 8), here the

installation is successful and Jenkins is ready. When a

project is submitted, it is appeared as in Figure 9. In this

example we connect the GitHub repository with Jenkins,

where the repository is shown in Figure 10. Pipeline

instruction for Jenkins is placed in the repository with name

"Jenkinsfile" with content is shown in Figure 11. Our

experiment of pipelining the built using Jenkins is

successful, with a project status is notified by Jenkins in the

dashboard shown in Figure 12. Jenkins pipeline branch main

Jurnal Teknik Informatika dan Sistem Informasi p-ISSN : 2443-2210

Volume 7 Nomor 1 April 2021 e-ISSN : 2443-2229

64

status with run number and status can be seen in Figure 13.

Log Checkout from GitHub version control was done as in

Figure 14. Figure 15 shows a Linux command to list files in

a directory, the command is executed at shell script,

followed by compilation of Java code (Figure 16). The

compiled code is then successfully executed (Figure 17).

The console output in Jenkins is shown in Figure 18. Actual

console output of the whole process is shown in Figure 19

and Figure 20.

Figure 6. Invoke Jenkins on the command line terminal

Figure 7. Jenkins is fully up and running

Figure 8. Jenkins initial dashboard view

Figure 9. A project "MyPipeline" is added to Jenkins

Figure 10. A repository in GitHub

Figure 11. Content of "Jenkinsfile" in the repository.

Figure 12. Pipeline status

p-ISSN : 2443-2210 Jurnal Teknik Informatika dan Sistem Informasi

e-ISSN : 2443-2229 Volume 7 Nomor 1 April 2021

65

Figure 13. Jenkins pipeline branch main status

Figure 14. Log checkout from Github version control

Figure 15. Build output of instruction 1, which is listing directory contents

Figure 16. Build output of instruction 2, which is compiling Java code

Figure 17. Build output for instruction 3, which is the execution of Java

console program

Figure 18. Jenkins console output

Figure 19. Actual console output (part 1)

Started by user Tjatur Kandaga G

01:35:37 Connecting to https://api.github.com using

Tjatur-K/******

Obtained Jenkinsfile from

5c783b7f2ea9828f04296c415656a6ecaf9f46c5

Running in Durability level: MAX_SURVIVABILITY

[Pipeline] Start of Pipeline

[Pipeline] node

Running on Jenkins in

/home/tjatur/.jenkins/workspace/MyPipeline_main

[Pipeline] {

[Pipeline] stage

[Pipeline] { (Declarative: Checkout SCM)

[Pipeline] checkout

The recommended git tool is: NONE

using credential 1251dd65-9587-4a2c-b42a-912434e0997d

 > git rev-parse --is-inside-work-tree # timeout=10

Fetching changes from the remote Git repository

 > git config remote.origin.url

https://github.com/Tjatur-K/coba-jenkins.git #

timeout=10

Fetching without tags

Fetching upstream changes from

https://github.com/Tjatur-K/coba-jenkins.git

 > git --version # timeout=10

 > git --version # 'git version 2.20.1'

using GIT_ASKPASS to set credentials

 > git fetch --no-tags --force --progress --

https://github.com/Tjatur-K/coba-jenkins.git

+refs/heads/main:refs/remotes/origin/main #

timeout=10

Checking out Revision

5c783b7f2ea9828f04296c415656a6ecaf9f46c5 (main)

 > git config core.sparsecheckout # timeout=10

 > git checkout -f

5c783b7f2ea9828f04296c415656a6ecaf9f46c5 # timeout=10

Commit message: "Ubah instruksi"

 > git rev-list --no-walk

142f6c0dbbee3f2d9f87e6e80a938d978948101a # timeout=10

[Pipeline] }

[Pipeline] // stage

[Pipeline] withEnv

[Pipeline] {

[Pipeline] stage

[Pipeline] { (build)

[Pipeline] sh+ ls -l

total 64

-rw-r--r-- 1 tjatur tjatur 453 Feb 28 01:35

IMobil.java

-rw-r--r-- 1 tjatur tjatur 140 Feb 28 01:35

IState.java

-rw-r--r-- 1 tjatur tjatur 240 Feb 28 01:35

Jenkinsfile

-rw-r--r-- 1 tjatur tjatur 11357 Feb 28 00:51 LICENSE

-rw-r--r-- 1 tjatur tjatur 1308 Feb 28 01:35

Mobil.java

Jurnal Teknik Informatika dan Sistem Informasi p-ISSN : 2443-2210

Volume 7 Nomor 1 April 2021 e-ISSN : 2443-2229

66

Here is a presentation of an example of TeamCity

experimentation: Firstly, TeamCity is invoked on the

command line terminal, see Figure 21, when successful it

shows start screen (Figure 22). In Figure 23 TeamCity

shows the screen to connect to a database. In the next Figure

24, a TeamCity administrator account is created.

Figure 21. Invoke TeamCity via command line terminal

Figure 22. TeamCity start screen

Figure 23. TeamCity database connection setup screen

When creating account is successful, then TeamCity is

ready, as shown in Figure 25. A GitHub repository is used

Fetching without tags

Fetching upstream changes from

https://github.com/Tjatur-K/coba-jenkins.git

 > git --version # timeout=10

 > git --version # 'git version 2.20.1'

using GIT_ASKPASS to set credentials

 > git fetch --no-tags --force --progress --

https://github.com/Tjatur-K/coba-jenkins.git

+refs/heads/main:refs/remotes/origin/main #

timeout=10

Checking out Revision

5c783b7f2ea9828f04296c415656a6ecaf9f46c5 (main)

 > git config core.sparsecheckout # timeout=10

 > git checkout -f

5c783b7f2ea9828f04296c415656a6ecaf9f46c5 # timeout=10

Commit message: "Ubah instruksi"

 > git rev-list --no-walk

142f6c0dbbee3f2d9f87e6e80a938d978948101a # timeout=10

[Pipeline] }

[Pipeline] // stage

[Pipeline] withEnv

[Pipeline] {

[Pipeline] stage

[Pipeline] { (build)

[Pipeline] sh+ ls -l

total 64

-rw-r--r-- 1 tjatur tjatur 453 Feb 28 01:35

IMobil.java

-rw-r--r-- 1 tjatur tjatur 140 Feb 28 01:35

IState.java

-rw-r--r-- 1 tjatur tjatur 240 Feb 28 01:35

Jenkinsfile

-rw-r--r-- 1 tjatur tjatur 11357 Feb 28 00:51 LICENSE

-rw-r--r-- 1 tjatur tjatur 1308 Feb 28 01:35

Mobil.java

-rw-r--r-- 1 tjatur tjatur 43 Feb 28 00:51

README.md

-rw-r--r-- 1 tjatur tjatur 586 Feb 28 01:35

StateBengkel.java

-rw-r--r-- 1 tjatur tjatur 613 Feb 28 01:35

StateGedungOlahraga.java

-rw-r--r-- 1 tjatur tjatur 544 Feb 28 01:35

StateKostTeman.java

-rw-r--r-- 1 tjatur tjatur 555 Feb 28 01:35

StateMall.java

-rw-r--r-- 1 tjatur tjatur 611 Feb 28 01:35

StateMaranatha.java

-rw-r--r-- 1 tjatur tjatur 584 Feb 28 01:35

StatePomBensin.java

-rw-r--r-- 1 tjatur tjatur 638 Feb 28 01:35

StateRumah.java

-rw-r--r-- 1 tjatur tjatur 493 Feb 28 01:35

TestMobil.java

[Pipeline] sh

+ javac IMobil.java IState.java Mobil.java

StateBengkel.java StateGedungOlahraga.java

StateKostTeman.java StateMall.java

StateMaranatha.java StatePomBensin.java

StateRumah.java TestMobil.java

[Pipeline] sh

+ java TestMobil

S: dari rumah ke kost teman

U: dari kost teman ke rumah

[Pipeline] }

[Pipeline] // stage

[Pipeline] }

[Pipeline] // withEnv

[Pipeline] }

[Pipeline] // node

[Pipeline] End of Pipeline

Could not update commit status, please check if your

scan credentials belong to a member of the

organization or a collaborator of the repository and

repo:status scope is selected

GitHub has been notified of this commit’s build

result

Finished: SUCCESS

Figure 20. Actual console output (part 2)

p-ISSN : 2443-2210 Jurnal Teknik Informatika dan Sistem Informasi

e-ISSN : 2443-2229 Volume 7 Nomor 1 April 2021

67

in this experiment, see Figure 26. Next step is to create

project on TeamCity, see Figure 27, then setup build

configuration properly on general setting (Figure 28).

Version control system (VCS) setting is also configured, see

Figure 29. In Figure 30, we define the sequence of build

steps to be executed. When everything is set, the build step

sequence is executed, and Figure 31 shows the result of

successful execution. Detailed statistics of the successful

build is shown in Figure 32, and the overview of the

successful build process is shown in Figure 33. A complete

detailed log of the build process is created along the way of

the process, see Figure 34.

Figure 24. TeamCity screen to create an administrator account

Figure 25. TeamCity is ready

Figure 26. GitHub repository

Figure 27. TeamCity screen to create project

Figure 28. Build configuration setup on general setting

Jurnal Teknik Informatika dan Sistem Informasi p-ISSN : 2443-2210

Volume 7 Nomor 1 April 2021 e-ISSN : 2443-2229

68

Figure 29. TeamCity build configuration version control system (VCS)

Figure 30. TeamCity configuration of sequence build steps to be executed

Figure 31. TeamCity build step sequence execution result overview

Figure 32. TeamCity shows statistics of build results

Figure 33. Overview of TeamCity success build process

Figure 34. Build process log created by TeamCity

p-ISSN : 2443-2210 Jurnal Teknik Informatika dan Sistem Informasi

e-ISSN : 2443-2229 Volume 7 Nomor 1 April 2021

69

V. DISCUSSION

CI/CD platform of software engineering and software

project management using Jenkins and TeamCity is

managed to work without any major problems.

Experimentation was done for various cases including

student projects. We managed to do a small survey which

gives results of positive acceptance of this platform by users

and students.

The results of our experimentations using Jenkins show

that Jenkins significantly improves the performance of the

CI/CD pipeline. Jenkins greatly reduces the time necessary

to do the process. So far, we don't experience a slowdown

caused by bottlenecking of the hardware, since our hardware

is relatively powerful enough to handle the job. Furthermore,

we experience similar performance and ease of TeamCity.

There is no significant performance difference, in term of

build process speed between Jenkins and TeamCity.

VI. CONCLUSION

We managed to build a CI/CD platform of software

engineering and software project management using Jenkins

and TeamCity. The CI/CD platform provides pipelined

processes necessary to a software development from source

code coding process until product deployment, all in

automatic fashion. Both tools feature product testing stages

which assure the quality of the product.

Through our experimentations, we can conclude that

Jenkins and TeamCity are similar in performance and ease,

with assumption that both are installed in a "decent" good

performance hardware. Therefore, the CI/CD platform using

Jenkins and TeamCity is suitable for software project

management in higher education, in particular for students

majoring information technology.

ACKNOWLEDGEMENT

We thank the Faculty of Information Technology,

Universitas Kristen Maranatha for funding this research.

Lembaga Penelitian dan Pengabdian Kepada Masyarakat

(LPPM) Universitas Kristen Maranatha is also

acknowledged for facilitating the administrative process

necessary for this research. User and students' positive

acceptance is highly appreciated.

REFERENCES

[1] R. S. Pressman and B. R. Maxim, Software Engineering: A

Practitioner's Approach, 9th edition, New York: McGraw-Hill

Education, 2019.

[2] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A

roadmap and agenda,” Journal of Systems and Software, vol. 123, pp.

176-189, 2017.

[3] L. E. Lwakatare, T. Kilamo,, T. Karvonen, T. Sauvola, V. Heikkilä, J.

Itkonen, P. Kuvaja, T. Mikkonen, M. Oivo and C. Lassenius,

“DevOps in practice: A multiple case study of five companies,”

Information and Software Technology, vol. 114, pp. 217-230, 2019.

[4] A. Mishra and Z. Otaiwi, “DevOps and software quality: A systematic

mapping,” Computer Science Review, vol. 38, pp. 1-14, 2020.

[5] D. J. Mala, “Integrating the Internet of Things into Software

Engineering Practices,” in Advances in Systems Analysis, Software

Engineering, and High Performance Computing, Hershey,

Pennsylvania, USA, IGI Global, 2019, p. 16.

[6] D. Ståhl, T. Mårtensson and J. Bosch, “The continuity of continuous

integration: Correlations and consequences,” Journal of Systems and

Software, vol. 127, pp. 150-167, 2017.

[7] J. Humble and D. Farley, Continuous delivery : reliable software

releases through build, test, and deployment automation, Boston:

Addison-Wesley Professional, 2010.

[8] L. Chen, “Continuous Delivery: Overcoming adoption challenges,”

Journal of Systems and Software, vol. 128, pp. 72-86, 2017.

[9] M. Fowler, “Continuous Integration,” [Online]. Available:

http://www.martinfowler.com/articles/continuousIntegration.html.

[Accessed 23 November 2019].

[10] M. Fowler, “Continuous Delivery,” [Online]. Available:

http://martinfowler.com/bliki/ContinuousDelivery.html. [Accessed 23

November 2019].

[11] I. Zubin,, “5 common pitfalls of CI/CD -- and how to avoid them,”

InfoWorld, 28 March 2018.

[12] H. Martin, “Continuous integration is not always the right answer.

Here's why.,” TechBeacon, 20 July 2015.

[13] Atlassian, “Continuous integration vs. continuous delivery vs.

continuous deployment.,” Atlassian, 14 April 2017.

[14] M. Manturewicz, “What is CI/CD,” [Online]. Available:

https://codilime.com/what-is-ci-cd-all-you-need-to-know. [Accessed

23 November 2019].

[15] T. Lehtonen, S. Suonsyrjä, T. Kilamo and T. Mikko, “Defining

metrics for continuous delivery and deployment pipeline,” in

Proceeding of 14th Symposium on Programming Languages and

Software Tools, University of Tampere, Finland, October 9-10, 2015.

[16] S. Arachchi and I. Perera, “Continuous Integration and Continuous

Delivery Pipeline Automation for Agile Software Project

Management,” in MERCon 2018, Moratuwa, Sri Lanka, May 2018.

[17] S. Krusche and L. Alperowitz, “Introduction of Continuous Delivery

in Multi-Customer Project Courses,” in ICSE Companion 2014:

Companion Proceedings of the 36th International Conference on

Software Engineering. ACM., Hyderabad, India, May 2014.

[18] L. B. Torvalds, “GIT,” Software Freedom Conservancy, [Online].

Available: https://git-scm.com. [Accessed 1 February 2020].

[19] “GitHub,” GitHub, Inc., [Online]. Available: https://github.com.

[Accessed 1 May 2020].

[20] A. V. Aho, M. S. Lam, R. Sethi and U. D. Jeffrey, Compilers-

Principles, Techniques, and Tools, 2nd edition., Boston: Pearson

Education, 2007.

[21] K. Naik and P. Tripathy , Software Testing and Quality Assurance,

Theory and Practice, Hoboken: Wiley, 2008.

[22] M. Aggarwal, TeamCity: continuous integration & DevOps with Java

and .NET, Birmingham: Packt Publishing, 2018.

[23] V. Melymuka, “Continuous Delivery with TeamCity,” in XPDays ,

Kiev, Ukraine , 2012.

[24] S. Machiraju and S. Gaurav, “Deployment via TeamCity and Octopus

Deploy,” in DevOps for Azure Applications, Berkeley, CA, USA,

Apress, 2018, pp. 11-38.

[25] J. Lee, Master Jenkins Course For Developers and DevOps,

Birmingham: Packt Publishing, 2017.

[26] V. Armenise, “Continuous Delivery with Jenkins: Jenkins Solutions to

Implement Continuous Delivery.,” in 2015 IEEE/ACM 3rd

International Workshop on Release Engineering (RELENG), Florence,

Jurnal Teknik Informatika dan Sistem Informasi p-ISSN : 2443-2210

Volume 7 Nomor 1 April 2021 e-ISSN : 2443-2229

70

Italy, 2015.

[27] P. Rai, Madhurima, S. Dhir, Madhulika and A. Garg, “A prologue of

JENKINS with comparative scrutiny of various software integration

tools,” in 2015 2nd International Conference on Computing for

Sustainable Global Development (INDIACom), New Delhi, India,

2015.

[28] R. Arpitha and S. N. Kavitha, “Automation Using Jenkins:

Plugins,Test, Design, Test Execution and Reporting,” Imperial

Journal of Interdisciplinary Research, vol. 3, no. 5, pp. 1171-1174,

2017.

[29] I. K. Moutsatsos et al., “Jenkins-CI, an Open-Source Continuous

Integration System, as a Scientific Data and Image-Processing

Platform,” SLAS DISCOVERY: Advancing the Science of Drug

Discovery, vol. 22, no. 3, p. 238–249, 2017.

[30] “Continuous Integration and Delivery - CircleCI,” Circle Internet

Services, Inc., [Online]. Available: https://circleci.com. [Accessed 1

May 2020].

[31] “GitLab,” GitLab Inc., [Online]. Available: https://about.gitlab.com.

[Accessed 1 May 2020].

[32] “Azure DevOps Server,” Microsoft, [Online]. Available:

https://azure.microsoft.com/en-us/services/devops/server/. [Accessed

1 Nov 2020].

[33] “Travis CI,” TRAVIS CI, GMBH, [Online]. Available:

https://www.travis-ci.com. [Accessed 1 Nov 2020].

[34] “Go CD,” ThoughtWorks Inc., [Online]. Available:

https://www.gocd.org. [Accessed 1 Nov 2020].

[35] “Bamboo,” Atlassian, [Online]. Available:

https://www.atlassian.com/software/bamboo. [Accessed 1 Nov 2020].

[36] “CloudBees CodeShip,” CloudBees, Inc., [Online]. Available:

https://www.cloudbees.com/products/codeship. [Accessed 1 Nov

2020].

[37] “Buddybuild,” Doe Pics Hit Holdings ULC., [Online]. Available:

https://buddybuild.com. [Accessed 1 Nov 2020].

[38] “AWS CodePipeline,” Amazon Web Services, Inc., [Online].

Available: https://aws.amazon.com/codepipeline/. [Accessed 1 Nov

2020].

[39] “Jenkins,” CloudBees, [Online]. Available: https://jenkins.io.

[Accessed 1 July 2019].

[40] J. Brains, “TeamCity,” Jet Brains, [Online]. Available:

https://www.jetbrains.com/teamcity. [Accessed 1 July 2019].

[41] “TeamCity Plugins,” JetBrains, [Online]. Available:

https://plugins.jetbrains.com/teamcity. [Accessed 1 Nov 2020].

[42] S. Labourey, “Enterprise DevOps: The Spine is Critical,” CloudBees,

20 March 2020. [Online]. Available:

https://www.cloudbees.com/blog/enterprise-devops-spine-critical.

[Accessed 1 April 2020].

