Mechanical Behavior of Poorly Graded Sandy Soil Using Compaction and Direct Shear Tests

Authors

  • Arif Rivianto Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kasiri
  • Agata Iwan Candra Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kadiri
  • Mahardi Kamalika Khusna Ali Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kadiri
  • Gilang Wahyu Kottama Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kadiri
  • Mokhamat Wildan Prasetyo Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kadiri
  • Muhamad Rizal Agus Joko Budiawan Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kadiri
  • Muhammad Rifqi Fatkhur Rohman Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kadiri
  • Muhammad Sousa Taufani Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kadiri

DOI:

https://doi.org/10.28932/jts.v19i2.6042

Keywords:

Shear Strength, Mechanical Properties, Poor Sand, Compaction

Abstract

Soil has important elements for living things as a place to live, building materials and planting media. The diversity of soil properties has been understood in various fields of science. Soil resistance greatly affects the stability and carrying capacity of the soil in civil buildings. Soil samples were taken from Sidorejo Village, Nganjuk Regency, which are classified as poorly graded sandy soils (SP). Many investigations have been made regarding the physical and mechanical properties of soil by examining compaction and shear strength. However, there are still many researchers who do not know the soil mechanical behavior in detail regarding soil (SP). The compaction test was carried out using the Standard Proctor Test method with the addition of 2.5% water to each sample, followed by a shear strength test using the Direct Shear Test method from compaction samples with maximum wet weight. This study aims to determine the mechanical behavior of poorly graded sand (SP) on shear strength. The shear strength test obtained a cohesion value of 2.0305 kPa and a shear angle of 28.892°. Based on the research results, soil mechanical properties (SP) can be used as a reference for construction on the same soil type and soil classification.

Downloads

Download data is not yet available.

References

Al-Badran, Y. M., & Al-Ameri, A. F. (2020). Effect of Adding Sand on Clayey Soil Shear Strength. IOP Conference Series: Materials Science and Engineering, 870(1). https://doi.org/10.1088/1757-899X/870/1/012079

ASTM 698-07. (2007). ASTM 698-07: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, 3, 15.

ASTM C136. (2019). ASTM C136/C136M Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM Standard Book, 3–7.

ASTM D3080. (2003). ASTM D 3080 - 03 Direct Shear Test of Soilds Under Consolidated Drained Conditions. ASTM International, 04, 7.

Cao, G., Wang, W., Yin, G., & Wei, Z. (2019). Experimental Study of Shear Wave Velocity in Unsaturated Tailings Soil with Variant Grain Size Distribution. Construction and Building Materials, 228, 116744. https://doi.org/10.1016/j.conbuildmat.2019.116744

Das. (2013). Principles of Geotechnical Engineering. Journal of Chemical Information and Modeling, 53(9), 1689–1699.

Deb, K., Sawant, V. A., & Kiran, A. S. (2010). Effects of Fines on Compaction Characteristics of Poorly Graded Sands. International Journal of Geotechnical Engineering, 4(2), 299–304. https://doi.org/10.3328/IJGE.2010.04.02.299-304

Malizia, J. P., & Shakoor, A. (2018). PT US CR. Engineering Geology, #pagerange#. https://doi.org/10.1016/j.enggeo.2018.07.028

Nugraha, A. S. (2020). Pengaruh Energi Pemadatan di Laboratorium Terhadap Parameter Kompaksi Material Crushed Limestone Padalarang. Jurnal Teknik Sipil, 16(1), 118–132. https://doi.org/10.28932/jts.v16i1.2496

Rehman, Z. ur, Khalid, U., Farooq, K., & Mujtaba, H. (2018). On Yield Stress of Compacted Clays. International Journal of Geo-Engineering, 9(1). https://doi.org/10.1186/s40703-018-0090-2

Rishavilenda, D. S., & Desiani, A. (2018). Menggunakan Geotextile Woven dan Non Woven. Jurnal Teknik Sipil, 14(c), 105–200.

Su, L. J., Zhou, W. H., Chen, W. Bin, & Jie, X. (2018). Effects of Relative Roughness and Mean Particle Size on the Shear Strength of Sand-Steel Interface. Measurement: Journal of the International Measurement Confederation, 122, 339–346. https://doi.org/10.1016/j.measurement.2018.03.003

Vallejo, L. E. (2001). Interpretation of the Limits in Shear Strength in Binary Granular Mixtures. Canadian Geotechnical Journal, 38(5), 1097–1104. https://doi.org/10.1139/cgj-38-5-1097

Wang, C., Li, S. yang, He, X. jia, Chen, Q., Zhang, H., & Liu, X. yu. (2021). Improved Prediction of Water Retention Characteristic Based on Soil Gradation and Clay Fraction. Geoderma, 404(October 2020), 115293. https://doi.org/10.1016/j.geoderma.2021.115293

Wang, H.L., Zhou, W.-H., Yin, Z.-Y., & Jie, X.-X. (2019). Effect of Grain Size Distribution of Sandy Soil on Shearing Behaviors at Soil–Structure Interface. Journal of Materials in Civil Engineering, 31(10), 1–10. https://doi.org/10.1061/(asce)mt.1943-5533.0002880

Wang, T., Liu, S., Feng, Y., & Yu, J. (2018). Compaction Characteristics and Minimum Void Ratio Prediction Model for Gap-Graded Soil-Rock Mixture. Applied Sciences (Switzerland), 8(12). https://doi.org/10.3390/APP8122584

Yuan, G., Zhang, J., Ren, Z., & Song, Z. (2022). Research on Mechanical Performance and Micro-Structural Characteristics for Large Graded Aggregates. Construction and Building Materials, 341 (May), 127860 . https://doi.org/10.1016/j.conbuildmat.2022.127860

Zhou, W. H., Jing, X. Y., Yin, Z. Y., & Geng, X. (2019). Effects of Particle Sphericity and Initial Fabric on The Shearing Behavior of Soil–Rough Structural Interface. Acta Geotechnica, 14(6), 1699–1716. https://doi.org/10.1007/s11440-019-00781-2

Downloads

Published

2023-10-01

How to Cite

Rivianto, A., Candra, A. I., Ali, M. K. K., Kottama, G. W. ., Prasetyo, M. W., Budiawan, M. R. A. J., Rohman, M. R. F., & Taufani, M. S. (2023). Mechanical Behavior of Poorly Graded Sandy Soil Using Compaction and Direct Shear Tests. Jurnal Teknik Sipil, 19(2), 223–233. https://doi.org/10.28932/jts.v19i2.6042